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Exciton spectra and polarization fields modified by quantum-dot confinements
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We have investigated exciton states and their energy spectra in GaN/Al,Ga;_,N quantum dots with different
confinement strengths using a variational-diagonalization method. Under a weak confinement, the transition of
exciton states from completely to incompletely confined cases is shown, as the dot size becomes less than the
critical size and only one kind of carrier can be well confined in the dot. Evolutions of binding energy and
energy spectra with dot size are studied and different quantum behaviors of incompletely confined excitons are
revealed. The oscillator strengths and the full width at half maximum of polarization fields are also calculated
and their abnormal increases in the incomplete confinement regime are predicted.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) have great applica-
tion potentials in future quantum-optical and quantum-
information devices due to their excellent optical properties,
such as narrow optical linewidths, stable photon flux, and so
on. Quantum-confined excitons dominate the optical emis-
sion and absorption of QDs.'> The unique optical property
of semiconductor QDs can be attributed to quantum confine-
ment of carriers, which leads to quantumlization of their en-
ergy levels and enhancement of optical transition.*> The op-
tical properties of QDs strongly depend on the shape® and
size of the confinement potential. Generally, the smaller the
dot size is, the stronger the confinement of their carriers is,
and hence, the better its optical performance is. In experi-
ment, to make full use of the advantage of QDs people usu-
ally fabricate QDs with their size approaching or less than
the exciton Bohr radius in bulk material aj=€h?/ ue?, where
M is the reduced mass of exciton, e=4mepe, with g, the
vacuum permittivity, and &, the static dielectric constant. aj
serves as a characteristic length scale for dot size that we can
achieve in fabricating.

Unlike quantum well, however, there is not always a
bound state for a carrier in the finite three-dimensional con-
fining potential provided by a QD. There is a critical size to
confine a carrier. Take a spherical QD with square potential
as an example, the critical radius is R.=(hm)/(N8m;V)),
where m; and V; are effective mass and barrier height, i
=e(h) means electron (hole). The smaller (lower) the effec-
tive mass is (barrier height), the bigger the critical size is.
Assuming that the critical size for electrons is bigger than
that for holes, if dot size is smaller than both critical sizes,
then the exciton cannot be confined. While in QDs with their
sizes in the incomplete confinement regime, that is, between
critical size for electron and that for hole, the electron by
itself cannot be confined. Owing to the attractive Coulomb
interaction, however, the electron can still be localized by the
confined hole and the exciton as a whole is confined. This is
so-called incompletely confined exciton.” Correspondingly,
we call excitons confined in QDs with their sizes bigger than

1098-0121/2009/80(7)/075306(7)

075306-1

PACS number(s): 78.66.Fd, 78.67.Hc, 73.21.—b

both critical sizes completely confined excitons.

For conventional GaAs/AlGaAs quantum dots, band off-
sets are large enough and both carriers can be well confined,
since R, (about 2.3 nm) is much less than aj, (about 12 nm).®
Nevertheless, in GaN/Al,Ga;_ N QDs with small x, R,
(about 2 nm) is very close to the corresponding ay (about 3
nm).>!0 In fact, the sizes of QDs prepared in some experi-
ments have approached this critical size.!! And for self-
assembled QDs fabricated through Stranski-Krastanov mode,
the dot size and its distribution depend strongly on the
growth condition,'® and hence the incompletely confined ex-
citon states can be introduced and novel photoelectric prop-
erties may be discovered.

Recently GaN related III-V semiconductor QDs draw
great interest owing to their scientific values and promising
applications for optoelectronic devices.'®!? A large number
of works have been reported on fabrication and
characterization,'3 optical properties'®!1415 and the effect
of built-in electric field1."'#-1® And it has been proposed to
control the oscillator strength of an exciton by external field.”
Yet, the incompletely confined effect has not been given suf-
ficient attention. In present work, we attempt to investigate
exciton states in quantum dots with different confinement
strengths to reveal the different characteristics between com-
pletely and incompletely confined excitons, and better under-
stand the reason behind them.

To find a set of proper basis and solve the model Hamil-
tonian with good convergence, we adopt a variation-
diagonalization (VD) method within the framework of
effective-mass approximation.!” By calculating critical
curves for carriers having bound states, the incomplete con-
finement regime is determined. Distinct-quantum properties
of incompletely confined excitons are revealed through in-
vestigating the binding energies, energy spectra, oscillator
strengths, and polarization-field distributions in QDs with
different sizes. The rest of this paper is organized as follows:
in Sec. II, we introduce the model exciton Hamiltonian and
the VD method. Section III is devoted to calculated results
and discussions, followed by a brief conclusion in Sec. I'V.
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II. MODEL AND METHOD
A. Hamiltonian

Because of low barrier and small dot size, the numerical
solution of incompletely confined excitons is much more dif-
ficult than that of general ones. Finite model potentials, in-
stead of the usually used infinite ones, must be adopted. For
an exciton confined in a disklike QD, the model Hamiltonian
can be written as

A2 2
H€x= 2 { p[*+Ui} e— (1)

- - S0
i=e,h i €|re - rh|

where U, is the finite confinement potential. It can be de-
scribed by

W, if |z =

1
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where 7; are three-dimensional cylindrical coordinates 7;
=(p;»z;), VY is the discontinuity of conductance band (e) or
valance band (). The function f(g;) corresponds to the lat-
eral confinement of QDs, which can simulate a finite para-
bolic lateral confinement with

2
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Several points should be mentioned here for our model. First,
in our calculation, the built-in field is neglected to emphasize
the effects of incomplete confinement. This is based on the
following considerations. First, although built-in electric
field in wurtzite GaN/AIN is strong, it is relatively weak in
GaN/Al,Ga,_ N QDs with small x.'® Second, the incomplete
confinement effect occurs in very small QDs where the po-
tential effect of built-in electric field is depressed, the behav-
iors of the electron and the hole are governed mainly by
quantum confinement. Third, built-in electric field is usually
applied along the growth direction while in lateral plane it is
not so significant and only brings little modification to the
two-dimensional confinement potential.'®!® Our discussion
about exciton states is focused on lateral motion and the
exact shape of confinement potential has only small effect on
properties of incompletely confined excitons as indicated by
our calculations.

The second point is that we neglect the variation in static
dielectric constant &, as the dot size changes. Although some
works suggest that it varies with dot size, this variation is not
significant unless the dot size is too small (with diameter less
than 0.6 nm).?° Also neglected is the slight difference (note
that x is small) of material parameters in and out the dot.
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After all, inclusion of these factors only brings little quanti-
tative difference and our assumption does not diminish the
validity of our calculation.

B. VD method

Due to entanglement of z part and lateral in-plane part,
even a direct numerical solution to the single-particle eigen-
states without Coulomb interaction under the confinement
potential U; described in Eq. (2) is difficult. To address this
problem, we adopt the VD method!” to get the eigenstates of
elctron (hole) as the first step.

Considering the character of model potentials U; and the
solvability of basis Hamiltonian, we, respectively, introduce
effective infinite two-dimensional lateral parabolic confine-
ment potential Uf)gf

ff_ 2
U;i =aqp; (5)
and effective square well Ugff in z direction
) H
B if [z > E
ff

U;:()'f||<H (6)

if |z = —

Z >

to reflect the spatial confinement provided by U;. Then,
single particle ﬁi can be recomposed as
ﬁi = I:Iio(ahﬁi) + Hi,(aiugi)
P2 P2
pi ff ] it 7
:%%‘ U::)i +2_r:l}+ Ugi +Hl-,(a,~,ﬂ,-),

where I:Il-' =U;- szf— U;’lff The eigel}energies (EE,?)) and cor-
responding eigenfunctions (I)E,?) of Hy(e;,B;) can be solved
analytically. The eigenfunctions <I>l(-,? can be written as

DY) =Wy p) W (B2, 7

where k={n;,m;,n;} generally indexes the basis.

Using CI),(,?) as basis, the energy levels and wave functions
of electron (hole) can be obtained by a VD process, which
can be written as

DUEY - Epd+M,,  JAL, =0
k , (8)
Eig = min EiO

{aisﬁ,‘}

where we have defined H;’k,k,=<¢5,?)|H;|¢>522) and A’,, is the
expansion coefficient of the eigenfunction. The detailed de-
scription of Newton’s method in searching the minimum is
as follows: 1. Initializing the parameters {¢;, 8;}; 2. Solving
{El(-,?),cl)gg)}; 3. Diagonalizing Hamiltonian matrix

DEY - Ep o+ M, AL, =0,

k,

4. Calculating the gradient of E;), adjusting the param-
eters and jumping to step 2 until the gradient reaches zero;
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and 5. Finally getting the ground-state energy

E‘l'g= min Ei()'
;. 3;

Once the minimum of Ej, is found, the ground and excited
states of the QD can be obtained.

C. Exciton states

It becomes more difficult for the calculation of incom-
pletely confined exciton states because the attractive Cou-
lomb interaction must be included. A set of appropriate basis
including both effects of dot confinement and Coulomb in-
teraction should be established to obtain energy spectra of
exciton states with satisfied convergence. Such a basis, how-
ever, is difficult to be determined just by experience. The VD
method is still the efficient way in such case.

To solve exciton Hamiltonian (1), we still employ the ef-
fective confinement potentials in Egs. (5) and (6), and sepa-
rate it into z part and in-plane part, which is further separated
into center-of-mass (CM) and relative parts with polar coor-
dinates as

H,=Hy+H'

= I:IPQM(%‘) + I:I:sel(ai’)\) + E I:Izi(ﬁi) + I:I,(aingi’)\)

i=e,h
(9)
with
H

HMap @)=+ (a+ apey, (10)

2 2 2 2
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Here, to avoid the well-known poor convergence caused by
Coulomb interaction under weak confinements, an effective
Coulomb term with variational parameter \ is introduced in
relative in-plane part. Not for this, the solution for incom-

pletely confined excitons is even impossible. I:Iz , th, and

IEIEM are analytically solvable. H%el can be solved exactly
using the series-expansion method.?! Thus, eigenvalues and
eigenfunctions of H can be given as

EY = EQy(ae, @) + EN) (@ cp,N) + EV(B) + L (By)
(12)
and

(0) _ V.M .z n,m L2
@, = \Pﬁcm (aw Ay pcm)qfﬁml (ae, Ay, A prel) >

We(Besz) Wi (Brin). (13)
where (EY, W2e), (EY, Wi, (E),, WYM), and (ED), wi"
are eigenvalues and eigenfunctions of H, , H_ , H3" and HE',
respectively. Again, k generally represents
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{N,M ,n,m,n,n;}. Taking <I)§(O) as basis, energy levels and
wave functions of an exciton can be obtained with good
convergence through exactly diagonalization. The proper set
of variational parameters (a,,B,,a;,8,,\) can be deter-
mined by searching the minimum of ground-state energy as
described in Sec. B.

From above results, the binding energy E, of the ground
state of the excition can be calculated as

Eb=EeO+Eh0_Eex’ (14)

where E,y, E,o and E,, denote the energies of the ground
state of electron, hole, and exciton, respectively.

From the eigenstates of excitons, their oscillator strengths
can also be obtained. Within dipole approximation, the po-
larization field of exciton is determined by matrix elements
between exciton states and the vacuum state

Mjo = <0|P5(7re1)|¢’j> * \‘Epcvq)j(ﬁCM’Frel =0), (15)

where p is the transition operator and p., is the element
between the conductance and valence bands. Thus, the po-
larization field corresponds to wave function with respect to
CM coordinate ﬁCM as relative coordinate 7,,;=0. Oscillation

strength is proportional to the norm of integral of polariza-
tion field:?>2*

f dﬁCMdﬁreleethq)j(ﬁCM’ﬁrel’ze’zh)

2

X 5(ﬁrel) 6(Z€ - Zh) (1 6)

Besides these, the full width at half maximum (FWHM) of
the norm of polarization fields of exciton ground states can
be also obtained to indicate the luminescence area.

III. RESULTS AND DISCUSSIONS

In the studies of GaN/Al,Ga,;_ N QDs with small x, the
material parameters are taken as £,=9.5, m:=0.2me, and
my,=1.4m,.'31° The band gap of GaN is taken as 3.46 eV
(Ref. 10) and the conduct and valence-band offsets are, re-
spectively, given by AE(x)=0.6x+5.05x>*0.03x (eV) and
AEy(x)=0.45x+2.57x> £ 0.05x (eV).? In the calculations,
energy and size are scaled by exciton Rydberg R
=26.38 meV and exciton Bohr Radius az=2.87 nm in bulk
GaN material, respectively.

A. Incompletely confined excitons

First, we would like to determine the incomplete confine-
ment regime for excitons. A finite confinement potential is
provided by the disklike QD, thus, just like the case for a
finite spherical square well, there are critical sizes for carriers
having bound states. Critical sizes can be given by perform-
ing single-particle calculations. We take the calculation for a
GaN/ Al GagoN QD as an example. At a given height the
dot radius must be bigger than certain value to have bound
states or vice versa. So critical sizes are presented by two
critical curves in the height-radius plane, as shown in Figs.
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FIG. 1. (Color online) Critical curves for electrons and holes to
have bound states in square confinement QD (a) and parabolic con-
finement QD (b) where insets depict the potential shapes. Variation
of energy spectra along with radius for electrons and holes confined
in square [(c) and (e)] and parabolic [(d) and (f)] confinement QDs
with height H=0.7aj.

1(a) and 1(b). Only at the right-up side of the upper curve
can both carriers have bound states and we call it complete
confinement regime. The area between two curves is the in-
complete confinement regime, where only the hole is well
confined in QD and the electron is localized by the hole
through Coulomb attraction. Two types of confinement po-
tential are adopted here as indicated by insets in Figs. 1(a)
and 1(b) and similar behavior is shown. The only difference
is that critical curves for square potential is lower than that
for parabolic one, which means that the carriers in a para-
bolic confinement QD are more easily to escape as the dot
gets smaller. In order to give a direct picture about effects of
dot confinement on single carrier in QDs with different sizes,
we plot in Figs. 1(c)-1(f) the dependence of energy levels on
dot radius for both carriers confined in both types QDs with
height H=0.7ay. As radius decreases, ground-state energy
increases tremendously, especially at small radius side. Com-
pared to holes, electrons have less bound states and bigger
energy differences between two levels.

Using VD method we can calculate the binding energy
more precisely and efficiently. In Fig. 2, the evolution of
binding energy with dot radius is shown for two types QDs.
For relatively big radius, binding energy increases as dot
radius deceases and approaches its maximum near the critical
radius. Binding energy under parabolic confinement potential
is larger than that under square one in complete confinement
regime which indicates a stronger confinement. As the dot
gets further smaller, it enters the incomplete confinement re-
gime and, instead of being enhanced, the confinement is re-
duced by leakage of great portion of wave function into the
matrix. Then the binding energy decreases rapidly toward
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FIG. 2. Variation in binding energy along with dot radius for
square (solid line) and parabolic (dashed line) confinement QDs
with H =0.7a2
R’ i.e., the binding energy of exciton in the bulk material. It
is worthwhile to point out that the incomplete confinement
effects have been also revealed in studying the shallow-deep
transitions of impurities in semiconductor QDs.?® What men-
tioned above means that the incomplete confinement effects
of carriers widely exist in exciton and impurity states in QDs
and can lead to interesting phenomena.

B. Exciton spectra

The combined effect of spatial confinement and Coulomb
interaction determines exciton states and makes it difficult
for us to find a proper set of quantum indices to label exciton
states. In VD method, however, this combined effect is in-
cluded. As a result, components of exciton states are very
concentrated, especially for ground states and low excited
states. Therefore, we can label exciton states by their main
components (N,M;n,m;n:,n;), then we can study the evo-
lution of energy levels along with dot size. We index the
ground state with a, and several low-excited states with a;,
by, b;, cp, and ¢; (i=1,2,...). a type states mainly contain the
excitation of CM motion, for example, a, a;, a,, and a3 are
mainly  (0,0;0,0;0,0), (1,0;0,0;0,0), (2,0;0,0;0,0), and
(3,0;0,0;0,0), respectively. b and ¢ types contain the intrinsic
excitations of excitons. In particularly, b, is mainly radial
excitation (0,0;1,0;0,0), and ¢ is mainly azimuthal excitation
(0,*=1;0,*1;0,0).

By labeling and classifying exciton sates we can obtain a
further understanding about the effect of dot confinement on
energy spectra. Shown in Fig. 3 is the evolution of energy
levels with dot radius for both square and parabolic confine-
ment QDs. Number of bound states deceases rapidly as dot
radius decreases. Energy levels of same type exciton states
show similar behavior while those of different types cross
each other, leading to changing in energy-level orders.
Mainly composed by CM motion, a-type exciton states vary
just like single-particle states as shown in Figs. 1(e) and 1(f).
For b and c types, however, their energy-level orders become
lower as radius deceases. This can be attributed to the com-
petition between Coulomb interaction and dot confinement.
In the regime of large radius, Coulomb interaction dominates
relative motion and excitation of relative motion needs more
energy than that of CM motion. As dot radius deceases, CM
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FIG. 3. Energy spectra of exciton confined in a parabolic con-
finement QD (a) and a square confinement QDs (b) with H=0.7aj.
The band gap E, has been extracted. Labels of energy level indicate
their main component as discussed in the text.

excitation becomes more and more difficult. When it enters
incomplete confinement regime, relative excitation replaces
the role of CM excitation in low-excited states and the exci-
ton becomes more hydrogenlike.

C. Oscillator strengths

The coupling between the exciton and electromagnetic
field is proportional to the oscillator strengths of the states.
Then the studies of oscillator strengths modified by QD con-
finements are important for applications in quantum informa-
tion and QDs coupled to microcavity. We plot in Figs. 4(a)
and 4(b) the variation in oscillator strength with dot radius
for both parabolic and square confinement QDs. For both
potentials, the oscillator strengths of a-type exciton states
increase almost linearly with increasing dot radius at rela-
tively bigger radius. The differences within a-type exciton
states in parabolic potential decrease while those in square-
potential increase. In fact, under an infinite parabolic con-
finement oscillator strengths of a-type states are absolutely
equal. Therefore oscillator strengths of a-type states in a
parabolic confinement QD tend to approach each other as dot
radius gets bigger and confining condition for them becomes
more similar to that under infinite parabolic confinement.
Under a square potential, however, a-type CM wave func-
tions have almost the same distribution regime (in the whole
dot), thus the more nodes (higher states) are, the less the
value of integration is, and consequently, the weaker the os-
cillator strength is. Furthermore, the oscillator strength of b
is always weaker than that of ¢, for both types of potential
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FIG. 4. Oscillator strengths of ground state and several low-
energy excited states for parabolic (a) and square confinement and
(b) QDs with H=0.7aj,. Labels here are same as those in Fig. 3.

since by has more nodes in radial part of CM wave function
than c.

The most interesting feature is the abnormal increase in
oscillator strength of low a-type excited states in small dots.
They can get even stronger than that of ground state. This is
because small dot cannot provide good spatial confinement
for these states and a great portion of CM wave function
escapes into matrix, especially in incomplete confinement
regime. Since a; or a, states extend much more broadly than
ao, their integrations are bigger than that of ground state,
leading to their giant oscillator strengths.

D. Polarization-field distribution

The luminescence area of an exciton is a main concern in
optical experiments and applications of QDs. Although the
spatial resolution of conventional optical devices is restricted
to half the wavelength of the used light, current development
in near-field optical-scanning microscopy technique enables
us to overcome this limit.>’ In near-field optical experi-
ments, the luminescence is mainly determined by single-
exciton recombination, thus the luminescence area of QD
can be simulated by the spatial distribution of polarization
field of exciton ground state. Although the oscillator strength
of the ground state does not change severely even in the
incomplete confinement regime, the spatial distribution of
polarization field can greatly depend on the size of the dot. In
Fig. 5(a) we show dependences of the FWHM of the norm of
polarization fields of exciton ground states on dot radius and
height in GaN/Alj 5GaygsN QDs. For the convenience in
experiments, nanometer is used for the unit of length. It can
be seen that for QDs with large sizes where the exciton is
completely confined (typically R>2.5 nm and H>1.5 nm),
the FWHM is mainly determined by the radius and very
weakly depends on the height. The spatial distribution of
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FIG. 5. (a) FWHM of norm of exciton-polarization fields as
functions of R in QDs with H=1,2-8 nm. (b) FWHM of exciton-
polarization field as functions of emitted-photon wavelength in QDs
with fixed height-to-radius ratio H/R=1/2, 2/3 and 1. Here
GaN/Alj15GapgsN QDs are used.

polarization field is close to the confinement area of QDs,
then the luminescence area will be proportional to the QD’s
area. On the contrary, for small QDs, the FWHM increases
dramatically with the decrease in the radius and strongly de-
pends on the height due to the incomplete confinement ef-
fects. Then there will be an abnormal relation between lumi-
nescence area and QD’s size, which means that larger
luminescence area may correspond to smaller QD size.

In some growth conditions, the QDs fabricated in experi-
ments have fixed ratio between height and radius.!! So we
also plot the dependences of FWHM on height-to-radius ra-
tio. And instead of the radius, the horizontal axis has been
changed to emitted-photon wavelength which is usually
given in experiments. In long-wavelength side, the FWHM
decreases with the decrease of the wavelength. Again, the
abnormal increase in FWHM is found in short-wavelength
side where the exciton is incompletely confined. For H/R
=1 the effect of incomplete confinement is more remarkable,
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as shown in Fig. 5(b). It is worthwhile to point out that an
abnormal increasing in apparent size of GaN/AIN QDs at
short-wavelength side is reported in a recent experiment.>” In
GaN/AIN QDs, the built-in electric field is strong which
equivalently lowers confinement potentials for electrons and
holes in z direction, then the incomplete confinement effect
may occur in QDs with larger sizes. We believe that the
effect of incomplete confinement can also be observed in
GaN/Al,Ga;_ N QDs with smaller sizes where the built-in
electric field is weaker. And in recent experiment,” the sizes
of GaN/Al,Ga;_,N QDs can indeed approach the critical
size of incomplete confinement.

IV. CONCLUSION

Noting the different optical behaviors between completely
and incompletely confined excitons and using VD method,
we have studied exciton states in GaN/Al,Ga;_ N QDs with
small x. Combining the effects of confinement potential and
Coulomb interaction, we can reasonably index the exciton
states with their main excitation modes, which are quite dif-
ferent from those in QDs with infinite potentials.

As dot size becomes less than the critical size for electron
but still larger than that for hole, incompletely confined ex-
citon forms. Rather than being confined by the QD, electron
is localized by the confined hole through attractive Coulomb
interaction. Quantum behaviors of incompletely confined ex-
citons are found quite different from those of completely
confined ones. As dot size decreases, binding energy in-
creases at first and achieves its maximum at about critical
size, and then decreases rapidly. When the dot approaches
the critical size, energy spectra become less dependent on
potential shape and only a few levels exist below the band
edge.

In incomplete confinement regime, the unusual enhance-
ments in oscillator strengths of low-lying excited states and
the FWHM of norm of ground-state polarization field are
clearly shown. The incomplete confinement effect can appear
in exciton and impurity states and even in corresponding
charged states in QDs with smaller size and lower barrier.
The studies may be useful for understanding some unusual
optical phenomena displayed in these systems and also help-
ful for applications of QDs in photoelectronic devices.
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